Applying Nanotechnology to Electronics
—Recent Progress in Si-LSIs to Extend Nano-Scale—

HIROSHI KOMATSU (Information and Communications Research Unit)*
ATSUSHI OGASAWARA (Affiliated fellow)**

1 Introduction

Nanotechnology broadly includes all technologies that handle nano-scale materials, and in a narrow sense, technologies that handle unique phenomena that arise in the 10-to-100-nm size range.

Materials of these sizes have been prepared using two techniques, the top-down and the bottom-up methods[1]. The top-down method is applied to process macro-scale materials into smaller sizes just as in the semiconductor process, whereas the bottom-up method is applied to integrate molecules or atoms into nano-scale materials just as a living organism synthesizes DNA and proteins, and integrates them into a cell, and further, into a body (Figure 1). The design rule of commercially available LSIs has already reached 90 nm[2].

The top-down method plays a major role in research in the U.S. and other foreign countries. Research programs are planned to expand the industrial life span of the Si-LSI technology[3].

Following the “21st Century Nanotechnology Research and Development Act” in the U.S.[4, 5], which plans to assess the application possibility of self-assembly as soon as possible, the bottom-up method has been successfully combined using the top-down method by researchers in U.S. universities and companies, showing that nanotechnology is being smoothly extended to conventional electronics. The bottom-up method is epitomized by self-assembly, which plays an important role in nanotechnology, together with prospective applications in ionics and electronics. In addition to the primitive assembly of materials, nanotechnology is moving forward to electronic devices and their integration.

This paper discusses recent progress and current trends in nanotechnology R&D towards industrial application, referring to publications at conferences and journals relating to Si-LSI technology.

2 Architecture Levels of the Si-LSI Technology

One candidate in constructing an electronic device using the bottom-up method is to combine it with the top-down method. When the device is constructed using not only the bottom-up method, we must examine the following:
the architecture of the conventional Si-LSI technology, the interface between the bottom-up method and the Si-LSI technology, and the extent of the influence of the bottom-up method on Si-LSI technology.

The architecture levels, which are discussed in the next chapter, are summarized in Table 1, where the levels are classified in four categories: materials, single devices, basic circuits, and functional blocks. An LSI is built incorporating a couple of functional blocks. Some examples of each level are shown in Table 1, as well as the extent of integration compared with a single transistor.

In many cases, Si-LSIs has progressed in establishing new technologies on the basis of conventional technologies, where some conventional technologies survive as long as they are indispensable. These are reusable LSI-design assets including materials, manufacturing equipment, and intellectual property (IPs). Manufacturing equipment and development environments are becoming a huge investment, which can be reduced by the efficient use of the assets. Although carbon-nanotube single-element devices have been demonstrated, we must be aware that there are still many technological (particularly integration) and financial issues to be solved before commercializing the carbon-nanotube devices.

Recent progress in nanotechnology at each level of Si-LSI is discussed in the next chapter.

3 Recent Progress in Nanotechnology in Electronic Devices

As an application of nanotechnology, five research works are discussed. The first three are related to a material and a single element in terms of Si-LSI architecture, and the latter two are related to a basic circuit and a functional block.

3-1 Molecular Memory

A dielectric film for a DRAM capacitor was fabricated using the bottom-up method of nanotechnology. A primary cell of DRAM comprises a pair, of a transistor and a capacitor, and the transistor (an active element) can be developed based on the scaling rule although the capacitor (a passive element) cannot. As the depth of the dielectric film decreases, the leakage current of the capacitor increases, and as the area of the film decreases, the capacitance decreases. A trench-type capacitor, in which a trench is dug on the surface of a Si substrate, and a stack-type capacitor, in which three-dimensional electrodes of the capacitor are fabricated, have been employed to balance the capacitance and the geometrical area, although this complicates the manufacturing processes of both capacitors, resulting in higher costs.

Prof. Werner G. Kuhr and his colleagues, University of California, proposed a two-layered film as a dielectric film, which comprises a self-assembled monolayer (SAM) and an electrolyte. The film is so designed that its capacitance and electromotive force can be controlled by a redox reaction between the SAM and the electrolyte.

The capacitance of the proposed capacitor,

<table>
<thead>
<tr>
<th>No</th>
<th>Architecture level</th>
<th>Example</th>
<th>No. of devices</th>
<th>Technology</th>
<th>Reusable asset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Materials</td>
<td>Silicon, High-k dielectrics</td>
<td><1</td>
<td>Manufacturing</td>
<td>Materials, Manufacturing equipment, Manufacturing factory</td>
</tr>
<tr>
<td>2</td>
<td>Single device</td>
<td>Transistor, Capacitor</td>
<td>1</td>
<td>LSI design</td>
<td>Design tools, Electronic design automation, IP</td>
</tr>
<tr>
<td>3</td>
<td>Basic circuit</td>
<td>Logic circuit, Delay circuit</td>
<td>10^2 - 10^3</td>
<td>LSI design</td>
<td>Design tools, Electronic design automation, IP</td>
</tr>
<tr>
<td>4</td>
<td>Functional block</td>
<td>Memory Arithmetic-logic unit</td>
<td>10^2 - 10^3</td>
<td>LSI design</td>
<td>Design tools, Electronic design automation, IP</td>
</tr>
</tbody>
</table>
which is in contrast to the conventional capacitor fabricated by insulation films such as silicon oxide, is governed by the molecule number in the SAM (or an area of the capacitor) and is independent of applied voltage, showing that the capacitance is more than 10 times the conventional capacitance. The charge retention time of the proposed capacitor is governed by the properties of the molecule, and is more than 10,000 times (more than 10s) that of the conventional capacitor, in which the retention time is governed by charge leakage at the silicon oxide film.

The molecule accommodates multiple states and potentials, which leads to a multiple-value memory and a multiple-value logic gate. The SAM is fabricated on a silicon or metal substrate allowing the self-alignment of molecules, and is compatible with the present semiconductor manufacturing equipment. ZettaCore, a venture company in the U.S., applied this technology to fabricating a 1 Mbit DRAM, whose electronic characteristics were assessed showing a promising future.

3-2 Fine Processing

Flash memory, a major non-volatile semiconductor memory, comprises a unit of a single transistor, in contrast to DRAM that comprises a unit of two elements (one transistor and one capacitor). The flash memory is rapidly expanding its market into commercial products, such as price-sensitive consumer electronics products, owing to its advantages of high integration and low price. Highly integrated flash memory is in big demand for portable devices, such as cellular phones, and can now show static and dynamic images that require larger memory capacity.

Flash memory has a size limit in the depth of the tunneling oxidized film (Figure 3A). A floating-gate-type transistor, a typical element of flash memory, stores information using a charge at the floating gate that is fabricated by stacking two gates. A charge is injected through the tunneling oxidized film by applying voltage at the control gate. The tunneling oxidized gate (generally SiO$_2$) must be sufficiently insulating to store the charge during the guaranteed data retention period (generally 10 years). The depth of the tunneling oxidized film cannot therefore be reduced in accordance with the scaling rule, and is limited to beyond a certain depth. This prevents transistors in flash memory from being miniaturized further and prevents the operating voltage from being reduced, which is essential for reducing power consumption and for sharing a common power supply with other low-operating-voltage components.

A new structure that may solve the problem has been presented, where the floating gate is replaced by a number of nano-dots (non-continuous film) (Figure 3B). A charge-accumulating electrode made of continuous film does not work when the film contains at least one defect, while an electrode made of a non-continuous film works sufficiently even when the film contains a certain amount of defects, although a few fractions of the charge...
are lost (Figure 3C). The nano-dot tunneling oxidized film provides higher fault tolerance and allows thinner depth of the film\(^9\).

When nano-dots are fabricated using the conventional semiconductor process, the size and geometrical placement of dots are not well controlled as designed, which leads to non-reproducible devices\(^{10}\). This suggests that a new technique is needed to fabricate nano-dots of a designed, uniform size.

Researchers at IBM in the U.S., presented a new technique using self-assembly to fabricate silicon nano-dots at the International Electron Devices Meeting in 2003\(^{11}\).

The researchers developed a new technique to fabricate nano-dots using the self-assembly of organic polymer materials, without using conventional lithography. This technique provides nano-dots with smaller size, higher density, better geometrical precision, and better uniformity than conventional lithography. The high-resolution SEM photograph indicates that silicon nano-dots are fabricated between the control gate (polysilicon) and the substrate (silicon) of a uniform size of about 20 nm (Figure 4).

The researchers in IBM successfully report that a charge-accumulating electrode can be fabricated combining the top-down method (conventional lithography) with the bottom-up method (self-assembly), which solves the problems of the conventional method.

Figure 4: Fabrication flow of silicon nano-dots

Source: Reference \(^{11}\). The schematics were prepared by the authors.
Some LSIs are used after changing the wiring among their elements inside, giving priority to either processing speed or low power consumption. The rewiring has conventionally been conducted by thermal cutting using a high electric current or irradiating with a laser beam. Conventional rewiring is non-reversible and may damage neighboring elements, which grows more serious as the patterning becomes finer. As an alternative, transistors are used as reversible switches, although this technique is accompanied by response delay, larger size, and higher power consumption.

Researchers in IBM, U.S.A., presented a new technique using electro-migration (IBM calls it “eFuse”) in July, 2004, where circuits are autonomically reconstructed\(^{[12]}\).

Electro-migration is the migration of metal atoms in solids when electric current flows at high density, which has been avoided due to the malfunction of LSIs.

The eFuse of IBM uses electro-migration for rewiring elements, cells, and units inside LSIs. The eFuse features reproducible fine wiring (about 100 nm) without damage (Figure 5).

Together with prioritizing both processing speed and low power consumption, the eFuse is designed to repair itself; where a failure is detected, the failure cell or unit is isolated and replaced by another cell or unit. Furthermore, it is designed to avoid failures by wiring resistance being adjusted depending on the load.

IBM is trying to establish an “autonomic” computer that controls and repairs itself. The eFuse, which is a technology based on hardware, contrasts with autonomic computing, which is based on software. IBM considers the so-far-problematic electro-migration as a next-generation technology related to reversible switches or as a technological seed to renovate computer hardware.

N E C C or por at ion (N E C), t he N at ion al Institute for Materials Science (NIMS), and the Japan Science and Technology Agency (JST), in Japan, are jointly developing a small, low-resistance switch using dendrite formation in a solid electrolyte. This switch is based on atomic switching in which electrodes are reversibly connected by the electrochemical formation of metal dendrites\(^{[13]}\).

A programmable logic circuit, which allows flexible and timely development, is attracting...
the attention of electronic-device engineers. The conventional programmable circuit has disadvantages, however, and is relatively slow in processing speed and high in power consumption due to the larger size of the programmable switches. The recent progress, as shown above, has the following implications: fabrication without lithography, smaller size (about 1/30 in area), lower wiring resistance (about 1/10), and shorter signal delay (shortened by 20 to 40%).

The atomic switch provides a reversible on/off as well as the eFuse of IBM. Further, the switch has the potential to provide the dynamic programming of logic circuits, in which circuits are re-programmed during operation, as well as static programming, in which circuits are built as designed.

3-4 Device Arrays

It is being attempted to combine conventional integrated circuits, which are even now being miniaturized further using the top-down method, with nano-tubes or nano-wires, which focuses on the elements that need to be further reduced in size\cite{15,16}.

Designed in the architecture above, the LSI accommodates pattern-size Fs (repetitive-size: Fs) in pattern-size F (repetitive size: 2 x F, F > Fs), where the pattern-size F is achieved using conventional lithography, and the pattern-size Fs is achieved without lithography (Figure 7). The periodic pattern fabricated by the pattern-size Fs is ready to construct functional blocks, such as a memory cell or gate arrays, in which transistors are periodically arranged.

A primary device in the cell is a logic circuit built by diodes or transistors that are built by crossing nano-wires.

In this LSI design, the connection between circuits constructed by conventional lithography and arrays of nano-wires, etc. is realized as a key technology. A decoder built using the 2 x Fs repetitive size is proposed for binding the 2 x F and the 2 x Fs, whereas the decoder must be built without using lithography. Doping to nano-wires or nano-imprinting\cite{5} may be a solution.

Although this design must be accompanied by technological breakthrough in building the decoder, the research is of significance in clarifying current design obstacles. If

Figure 7: Circuit architecture based on arrays, such as nano-wires

Source: Prepared by the authors, based on references\cite{15,16}.
3-5 QCA Logic LSI

The present LSI is designed from an upper architecture (highly abstract) to a lower (lowly abstract), where each design step is precisely described. This flow has worked effectively in the design of large-scale LSIs with some restrictions. Design errors are detected by modeling and verifying at each step, by which effective design is achieved for still-now-expanding LSIs without re-modeling. The described model is dependent on manufacturing technology because this flow becomes less abstract, or more realistic, from the upper to the lower. The present LSIs based on CMOS are likely, at levels lower than the logic circuit in Figure 8, to be modified due to the conditions and limitations of manufacturing technologies.

A design methodology is under development to effectively design a highly integrated system based on QCA[17], whereby the design methodology for LSIs is more or less modified.

QCA is attractive because the element of QCA is potentially reduced in size to less than that of CMOS. Although the architecture of QCA was proposed more than ten years ago, its impressive application to integrated circuits has not yet been reported. The lack of a design methodology for QCA by which functional elements are integrated into a system accounts for some of difficulties facing QCA.

Prof. Steven C. Henderson and colleagues of Valparaiso University, Indiana, U.S.A., have developed a design methodology that builds a structured model of elements and conducts modeling and verification on the lower architecture[17]. For example, a hardware description language[17] has been developed, which is a design tool for constructing a structured model of elements from a logic model. In addition, an integrated design methodology for QCA has been proposed, whereby the layout for each QCA cell in the lower architecture is constructed, and its performance is simulated.

Complicated LSIs have recently been effectively designed in a short period using commercially available, reusable LSI design assets (IP). The IP is placed in a technological intermediate...
region that is independent of the strategies, manufacturing, etc. of companies, and is mostly commercially available. Further development of the design methodology for QCA, in which the IP and other assets have been well applied, may also contribute to progress in conventional LSI design methodology. A technology to reuse IP plays an important role in effectively integrating elements that are governed by new physical phenomena.

4 Towards Steady Progress in Nanotechnology

Compound semiconductors, represented by GaAs (important for light-emitting devices), were believed to be a replacement for silicon in the field of electronics because of their excellent properties. These semiconductors, however, failed to establish a large industry due to slow progress in related technologies. Excellent in their properties, it is difficult to integrate compound semiconductors. Nanotechnology might be limited in use unless the performance of highly integrated nano-devices is impressive, no matter how impressive the performance of a single nano-element is.

Nanotechnology might not replace all micro-scale technologies immediately. Smooth transition from micro to nano, or the smooth integration of nanotechnology with conventional technologies, is essential. Prof. Nishi of Stanford University, California, U.S., claims that two facets of nanotechnology, “Evolutionary Nano” and “Revolutionary Nano,” should not be confused[18]. Evolutionary Nano is exemplified by the steady miniaturization of Si devices using the top-down method, whereas Revolutionary Nano signifies quantum-leap miniaturization using the bottom-up method. Although Revolutionary Nano is sensationaly reported by the mass media, Evolutionary Nano potentially contributes more to industry. There should be a number of technological breakthroughs for Revolutionary Nano to be successfully commercialized. Research assets should be invested more in Evolutionary Nano, which is finally being combined with Revolutionary Nano.

A survey on molecular assembly (Article 5, Section b) in the “21st Century Nanotechnology Research and Development Act” in the U.S. is attracting great attention[19]. The National Research Council will give a final verdict on whether self-assembly can be commercialized as materials or machines at a molecular scale or not at the first triennial meeting[19]. Long-term investment based on well planned strategy is essential for the materialization of next-generation technologies, such as nanotechnology, where planning should include impressive success in industry, signifying the bright future of the technology. The verdict by the National Research Council is a possible case to be tested.

Although the pros and cons of the top-down and bottom-up methods, to fabricate nano-scale materials, have been discussed in Japan, new ideas for combining both have not been well studied, except for research in industry (NEC, etc.). The recent progress in the U.S. that tries to combine both methods is suggestive, and is unveiling a new paradigm of nanotechnology indicating realistic applications in industry.

5 Conclusion

Nano-scale materials for nanotechnology have been prepared using two techniques, the top-down and bottom-up methods. The top-down method is applied to process macro-scale materials into smaller sizes, just as the semiconductor process does, whereas the bottom-up method is applied to integrate molecules or atoms into nano-scale materials, just as a living organism synthesizes proteins.

The bottom-up method has recently been successfully combined with the top-down method by researchers at universities and companies in the U.S., showing that nanotechnology is being smoothly extended to conventional electronics. The bottom-up method is epitomized by self-assembly, which plays an important role in nanotechnology, together with prospective applications in ionics and electronics. In addition to the primitive assembly of materials, nanotechnology is moving forward to electronic devices and their integration, in which LSI design is being explored.

Nanotechnology is presented as a realistic,
promising technology for the future due to recent progress in this field, where nanotechnology is combined with conventional Si-based electronics.

Long-term investment based on well planned strategy is essential for materializing next-generation technologies, such as nanotechnology, where planning should include impressive success in industry, signifying the bright future of the technology.

Although the pros and cons of the top-down and bottom-up methods have been discussed in Japan, new ideas for combining both have not been well studied, except for research in industry (NEC, etc.). The recent progress in the U.S. that tries to combine both methods is suggestive, and is unveiling a new paradigm of nanotechnology indicating realistic applications in industry.

Acknowledgments
The authors thank Prof. Yoshio Nishi of Stanford University for his valuable comments.

Glossary
*1 DRAM
A semiconductor memory device that allows random access (read and write). Mainly used for the main memory of a computer.

*2 Status has discrete values
A molecule containing a multi-porphyrin nano-structure has, reportedly, a maximum of eight multiple oxidation states\(^{[4]}\). Porphyrin is an organic pigment.

*3 ZettaCore
A venture company established in 1999 by researchers of University of California and North Carolina State University.

*4 Flash memory
Electrically rewritable non-volatile memory, where all or a block of data can be erased.

*5 Nano-imprint
Application of metal pressing using molds to nanotechnology. A nano-scale printing technology in which a mold with micro-patterns is impressed onto a material such as a plastic film.

*6 QCA
Cellular automata (CA) are, by definition, dynamical finite-state machines. On a regular lattice (repeated structure of points has the same kind of neighborhood), one places a finite-state machine at each point. The machine changes its state as a function of states of its neighbors and its own state. The states of all machines in the lattice are updated synchronously and simultaneously. Cellular automata formed by quantum dots are called quantum cellular automata (QCA). A familiar example of cellular automata is a game of “Othello” in play.

*7 Hardware description language
formal language to describe hardware architecture, in place of circuit schematics, for processing with a computer. Hardware is developed by this language as software is developed.

References

[12] Press release of IBM:

[14] Press release of Japan Science and Technology Agency:
http://www.jst.go.jp/pr/announce/20040218/

[15] Website of California Institute of Technology:
http://www.cs.caltech.edu/research/ic/molecular_arch.html

